Dynamic patterns of knowledge flows across technological domains: empirical results and link prediction
نویسندگان
چکیده
The purpose of this study is to investigate the structure and evolution of knowledge spillovers across technological domains. Specifically, dynamic patterns of knowledge flow among 29 technological domains, measured by patent citations for eight distinct periods, are identified and link prediction is tested for capability for forecasting the evolution in these cross-domain patent networks. The overall success of the predictions using the Katz metric implies that there is a tendency to generate increased knowledge flows mostly within the set of previously linked technological domains. This study contributes to innovation studies by characterizing the structural change and evolutionary behaviors in dynamic technology networks and by offering the basis for predicting the emergence of future technological knowledge flows.
منابع مشابه
Knowledge Flows Automation and Designing a Knowledge Management Framework for Educational Organizations
One of an important factor in the success of organizations is the efficiency of knowledge flow. The knowledge flow is a comprehensive concept and in recent studies of organizational analysis broadly considered in the areas of strategic management, organizational analysis and economics. In this paper, we consider knowledge flows from an Information Technology (IT) viewpoint. We usually have tw...
متن کاملBankruptcy Prediction: Dynamic Geometric Genetic Programming (DGGP) Approach
In this paper, a new Dynamic Geometric Genetic Programming (DGGP) technique is applied to empirical analysis of financial ratios and bankruptcy prediction. Financial ratios are indeed desirable for prediction of corporate bankruptcy and identification of firms’ impending failure for investors, creditors, borrowing firms, and governments. By the time, several methods have been attempted in...
متن کاملA New Model for Prediction of Heat Eddy Diffusivity in Pipe Expansion Turbulent Flows
A new model to calculate heat eddy diffusivity in separating and reattaching flows based on modification of constant Prt is proposed. This modification is made using an empirical correlation between maximum Nusselt number and entrance Reynolds number. The model includes both the simplicity of Prt=0.9 assumption and the accuracy of two-equation heat-transfer models. Furthermore, an appropriate l...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملDeveloping a Dynamic Regression Model for Predicting Future Operating Cash Flow
The purpose of this research is to develop a dynamic regression model for prediction of future operating cash flows of firms accepted in Tehran Stock Exchange. So, the information of 250 companies were considered during 2004 to 2017. In this study, operational and economic variables were added to the fundamental model of Bart, Cram and Nelson (BCN). Due to the simultaneous effect of sales growt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1706.07140 شماره
صفحات -
تاریخ انتشار 2017